Wednesday, August 24, 2011

Cost Management for Engineers

Objectives:
·       To define concepts, methods, and indicators of cost management.
·       To develop the participants capabilities in cost management in different areas.
·       To raise the skills of participants in planning, implementing and improvement programs.


1- Cost Management:

It is a powerful systematic method
to optimize the cost performance and
Overcome the cost constraints.


Min.  Max. Proactive Approach

Min. Cost               Max. Performance

Cost Management Module Responsibility:
 Cost manager 
Block diagram:
Main Output Forms & reports:
·       Cost elements report
·       Cost estimation report
·       Cost analysis report
·       Value engineering report
·       Cost control (P.E. & KPI) report


Cost Terms:

§  Cash flow analysis determines the estimated annual costs and benefits for a project and the resulting annual cash flow.
§  Cost budgeting: Allocating the overall cost estimate to individual work items to establish a baseline for measuring performance.
§  Cost control: Controlling changes to the project budget.
§  Cost estimating: Developing an approximation or estimate of the costs of the resources needed to complete a project.
§  Direct costs are costs that can be directly related to producing the products and services of the project.
§  Indirect costs are costs that are not directly related to the products or services of the project, but are indirectly related to performing the project.
§  Life cycle costing considers the total cost of ownership, or development plus support costs, for a project.
§  Profits are revenues minus expenses.
§  A cost management plan is a document that describes how the organization will manage cost variances on the project.
§  Cost budgeting involves allocating the project cost estimate to individual work items over time.


2- Cost Estimation:

*  Total direct cost
§  Total Materials cost
§  Total Labor cost
§  Total Equipment cost
§  Total Sub-contract

*       Total indirect cost (overhead)
§  Project (job or site) overhead (10 to 20 %)
§  Office (management) overhead (5 to 10 %)
§  Sales tax (3 to 6 %)


·       Risk estimation (for critical activities and resources)
(Owner === Change orders ===  from 0  up to 25%)

·       Total cost = Direct cost + Indirect cost + Risk estimation

·       Profit (10 to 20 %) For normal projects

·       Price = Total cost + Profit

·       Markup = Office overhead + Profit = (15 to 30 %)
·       Profit               = Revenue – Total cost
                    %      = Revenue / Total cost


·       Value Added  reflects the internal resource utilization
 = Revenue – External resources
                    %      = Revenue / External resources

·       Margin factor reflects the overhead utilization
 = Revenue - Total direct cost
                 %         = Revenue / Total direct cost

Price policy for construction projects:
Price limit  = (1.3 to 1.7) ERC    
Margin Factor  = 1.3 to 1.5
Price Estimation Parameters:
Price = Total Cost * Weight Factor



1- Project information:
-        Scope and requirements
-        Location and Utilities
-        HSE (Health-Safety-Environment) requirements
-        Quality requirements
-        Duration, etc.

2- Contractor information:
-        Company strategy or policy
-        Resource availability
-        Available and unused capacity (work load)
-        Overhead ratio
-        Value added ratio
-        Mob and De-Mob
-        Contractor history (CV & Quality manual), etc.

3- Owner information:
-        Owner strategy or policy
-        Contract type
-        Price measurement (LE or $)
-        Payment condition (Cash flow)
-        Bonus/ penalty
-        Future projects
-        Owner history, etc.

4- Market information:
-        Competition level
-        Relationships
-        Environment conditions
-        Limitations and constraints, etc.



Cost estimation & analysis:

        - Direct cost:
                        - Materials                      30
                        - Equipment                    20
                        - Manpower                    20
                        - Subcontractor              30
                                                     ===
        - Total direct cost:                         100

        - Project overhead                          10

        - Sector overhead                             5

        - Company overhead                        5
===
        - Total cost                                     120

        - Profit                                              30
===
        - Price                                             150

        - External resource  (M+S)               40
===
        - Value added                                  110

        - Margin factor                      150/100 = 1.5




Example: Construction project



Example: Normal cost estimation & analysis:
        - Direct cost:
                        - Materials                      10                   E
                        - Equipment                    20                   I
                        - Manpower                    10                   I
                        - Subcontractor                5                   E
===
        - Total direct cost:                         45
        - Room overhead                           20                   I
        - Office overhead                           10                   I
===
        - Total cost                                     75            I + E
        - Internal resource                          60          
        - External resources                       15





Case Study:
The annual cost information of XYZ Company was as follows:
Cost element
Global
Projects 2006
2005
2006
P1
P2
P3
Revenue (M$)
80
95
20
25
50
Total cost
75
90
15
20
35
Direct costs
40
50
10
15
25
Overhead
35
40
5
5
10
Internal resources
35
45
5
10
20
External resources
40
45
10
10
15



Based on this information, discuss briefly the annual performance evaluation for this company.
Main Indicators:
·       Profit               = Price – Total cost
                    %      = Price / Total cost
·       Value Added   = Price – External resources
                    %      = Price / External resources
·       Margin factor = Total project value - Total direct cost
                 %        = Total project value / Total direct cost


Cost element
Global
Projects 2006
2005
2006
P1
P2
P3
Revenue          (M$)
 X/2006            (%)              
80

95
100
20
25
50
Total cost        (M$)
X/2006            (%)             
75
90
100
15
20
35
Profit               (M$)
                        (%)
X/2006            (%)             
5
5

100
5
5
15
Value Added  (M$)
                        (%)
X/2006            (%)             
40
50

100
10
15
35
Margin factor  (M$)
                        (%)
X/2006            (%)             
45
55

100
15
20
35
Conclusion (Strength & Weakness points)
Cost Performance Evaluation
- 2005/2006:
-
- P1/2006:
-
- P2/2006:
-
- P3/2006:
-



3- Pricing the project:

Tender Process:
·       Rough-cut estimation (error ±7-10%) based on history
§  Unit price          

Process planning:
·       Detailed estimation (error ± 3-5%)
§  Detailed price
§  Unit price
Example:
Project Cost Estimation Based on Unit price

Item #
Description
Unit
Estimated
Quantity
Unit
Price $
Estimated
Amount $
1
Excavation #1
M3
3600
1.2
4320
2
Excavation #2
M3
350
7.7
2695
3
Concrete #1
M3
120
6
720
4
Concrete #2
M3
200
18
3600
5
Concrete #3
M3
120
60
7200
6
Concrete #4
M3
280
80
22400
7
Steel #1
ton
120
290
34800
8
Steel #2
ton
65.5
410
26855
9
Painting
(subcontractor)
l.s.
Job
-
3120
Total Estimated Amount ($)
105710




Example:
Project Cost Estimation Based on Detailed price

#
Des.
Unit
E.Q.
Mat
$
Lab
$
Eq
$
Sub
$
TDir
$
1
Ex. #1
M3
3600
-
1376
1819
-
3195

Ex. #2
M3
350
-
1430
553
-
1983
3
Co. #1
M3
120
185
279
66
-
530
4
Co. #2
M3
200
1628
1008
53
-
2689
5
Co. #3
M3
120
3324
1807
131
-
5262
6
Co. #4
M3
280
8820
7424
272
-
16516
7
St. #1
ton
120
11719
14133
119
-
25971
8
St. #2
ton
65.5
12764
5909
734
-
19407
9
Paint.
l.s.
Job
-
-
-
2300
2300
Total direct cost                             =       $  77853
Job overhead (13.75%)                =           10705
                                                                   --------------
                                                                       88558
Sales tax (3.0 %)                            =            2657
                                                                   --------------
                                                                      91215
Markup (15.0 %)                           =          13682
                                                                 --------------
                                                                    104897
Bond                                                =             370
                                                                   --------------
Total Project Bid                           =       $ 105267

Margin factor    = Total project bid / Total direct cost
                                       = 1.3521



Unit price = Unit direct cost * Margin factor

#
Des.
Unit
BOQ
Unit
Price $
Total Value
1
Ex. #1
M3
3600
1.20
4320
2
Ex. #2
M3
350
7.66

3
Co. #1
M3
120
5.97

4
Co. #2
M3
200
18.18

5
Co. #3
M3
120
59.29

6
Co. #4
M3
280
79.75

7
St. #1
ton
120
292.62

8
St. #2
ton
65.5
400.61

9
Paint.
l.s.
Job
-
3110
Total Estimated Amount ($)






#
Des.
Unit
(1)
E.Q.
(2)
TDir
$
(3)
Margin
(4)=
(2)*(3)
E.A. $
(5) = (4)/(1)
Unit
Price $
1
Ex. #1
M3
3600
3195
1.3521
4320
1.20
2
Ex. #2
M3
350
1983
1.3521
2681
7.66
3
Co. #1
M3
120
530
1.3521
717
5.97
4
Co. #2
M3
200
2689
1.3521
3636
18.18
5
Co. #3
M3
120
5262
1.3521
7115
59.29
6
Co. #4
M3
280
16516
1.3521
22331
79.75
7
St. #1
ton
120
25971
1.3521
35115
292.62
8
St. #2
ton
65.5
19407
1.3521
26240
400.61
9
Paint.
l.s.
Job
2300
1.3521
3110
3110
Total Estimated Amount ($)
105465



Project Budget for a Design Firm
Budget Summary

Personnel
  Architectural Division
  Engineering
  Environmental Division
    Total

Other Direct Expenses
  Travel
  Supplies
  Communication
  Computer Services
    Total

Overhead

Contingency and Profit

    Total

$ 67,251.00
45,372.00
     28,235.00
$140,858.00


2,400.00
1,500.00
600.00
    1,200.00
$ 5,700.00

$ 175,869.60

    $ 95,700.00

$ 418,127.60
Engineering Personnel Detail
Senior Engineer
Associate Engineer
Engineer Technician
    
Total
$ 11,562.00
21,365.00
    12,654.00

$ 45,372.00



Project Budget for a Wharf Project
      (Amounts in Thousands of Dollars)
Project Budget for a Design Firm
Budget Summary


Personnel
  Architectural Division
  Engineering
  Environmental Division
    Total


Other Direct Expenses
  Travel
  Supplies
  Communication
  Computer Services
    Total


Overhead


Contingency and Profit


    Total


$ 67,251.00
45,372.00
     28,235.00
$140,858.00




2,400.00
1,500.00
600.00
    1,200.00
$ 5,700.00


$ 175,869.60


    $ 95,700.00


$ 418,127.60
Engineering Personnel Detail
Senior Engineer
Associate Engineer
Engineer Technician
    
Total
$ 11,562.00
21,365.00
    12,654.00


$ 45,372.00


Contract types:
§  Turn key
§  Lumpsum
§  Unit price
§  Cost plus

Payment conditions:
§  Value
§  Time
§  Performance (milestones, worktypes, Man-hour)

Case: method of payments for turn key contract:
"Power Station Projects"
Item
Itemized
(%)
Total
(%)
Duration
(Month)
Design                          
5
5
4
Material procurement
50
55
2
Installation
15
70
3
Testing (protection)
10
80
6
PAC
10
90
12
FAC
10
100
24

or

Item
Itemized
(%)
Total
(%)
Duration
(Month)
Down-payment
20
20
0
Valid ship documents
20
40
2
Received in good conditions on site
30
70
3
Testing (protection)
10
80
6
PAC
10
90
12
FAC
10
100
24






Gas Pipeline 100 Km

Payment
Down
First
Second

Third

Value
25%
25%
25%
25%
Time
0
30 day
60 day
120 day
Tech. conditions:
%
%
%
%
A1
0
100
100
100
A2
0
-
50
100
A3
0
100
100
100
A4
0
-
50
100
A5
0
-
50
100


Cash in/ Cash out Analysis

Month
Contract Expenses
Payments Received
1
2
3

Total
$
$
$                      

$
$
$
$

$


4- Cost Standard Information:

Case study #1:
Project description: "Power Stations"
Standard information:
Base year 2005        Price change = 7 to 10 % annual
Power (MW)
Estimated investment (M$/MW)
<15
0.60 to 0.70
15 to 60
0.50 to 0.60
>60
0.45 to 0.50
Power (15 to 60 MW):
Phase
Cost
%
Duration
Accuracy %
Pre-Investment:
·      Pre-feasibility study
·      Feasibility study

0.2-0.5
1.0-2.0

1w-1m
1-3 m

± 20
± 10
Investment:
(Project management)
·      Contracting
·      Detailed Design
·      Procurement
·      Construction
·      Startup & testing


0.1-0.5
3.0-5.0
50-60
20-25
3.0-5.0


1-2 m
1-3 m
1-3 m
3-6 m
1-2 m




± 5-10
Operational:
(operational management)
·      Production
·      Maintenance
·      Planning & control


10-20
LE/ ton steam



15-20 y



± 3-5


Case study #2:
Project description: "Water Systems"
Standard information:
Base year 2005        Price change = 7 to 10 % annual
Flow rate 30 to 120 m3/hour & Total head 30 to 120 m
Main item
Estimated investment
Pump unit
(Supply and installation 2 pumps, motor, valves, etc.)
200 to 400
$/m3 flow rate
Piping system
(Pipe lines, valves, utilities, ..etc.)
16 to 24
$/m length
Tank system
(Reinforced concrete)
20 to 40
$/m3 tank capacity
Useful rules:
Pipe:          V = 1.5 to 3.5 m/s        Q = V * A           di = (5 to 20) cm
Pump:        Centrifugal                   H= hs + Losses = (1.5 to 2.5) hs
Valves:       Check valve, Control valve & Manual valve.
Tank size:  (2 to 10) hours

Case Study:
Project description: Water System
·       Flow rate 40 m3/hour       Static head = 30 m
·       Piping length 500 m
·       Target duration: 90 day                   Start date: 1/1/2007

Required:
1.   Select the water system.
2.   Construct the master plan.
3.   Construct the project cost profile and S-curve.
4.   Construct the payment conditions.
5.   Construct the review control (target performance) chart.


Case study #3:
Project description:  "Gas Pipe Lines"
Standard information:
§  Technical Standards: API  1104                Class: GL1
§  Specs: 20 inch pipe & Max pressure 40 bar & L(10 to 100) km
§  Base year 2005       &    Price change = 7 to 10 % annual

Activity ID

Activity Description

Performance rate Km/day

Pred-ecessor


Estimated Cost

1000$/Km
ES
Survey
4
-
0.1
ED
Design
4
ES
SS2, FF2
0.2

CE

Excavation

2

ED
SS4, FF2
1
CS
Stringing (pipe laying)
4
CX,
SS1, FF1
80
CW
Welding
1
CS
SS1, FF1
4
CN
NDT
2
CW
SS1, FF1
2
CW
Coating & Wrapping
2
CN
SS1, FF1
0.4
CL
Lowering
4
CW
SS1, FF1
0.2
CB
Backfilling
4
CL
SS1, FF1
0.6
CH
Hydro-test
(3 days)
CB,
FS0
0.02
This information according to certain available resources.




Case Study:
Project description: Gas Pipe Line 60 Km
·       Target duration: 90 day                   Start date: 1/1/2007
·       Down time cost rate = $10,000 /day
·       Bonus= $20,000/week               Penalty=  $30,000/week

Required:
1.   Construct the master plan.
2.   Construct the project cost profile and S-curve.
3.   Construct the payment conditions.
4.   Construct the review control (target performance) chart.


Case study #4:
Project description:  "Underground 132 KV Cables"
Standard information:
§  Technical Standards: IEC 840 or SEC-CRB 5/16
§  Specs:  1200 mm2                              Class: CL1
§  Main load current 850 A & Max load current 930 A
§  Base year 2006     &    Price change = 7 to 10 % annual

Activity ID
Activity Description
Performance rate Km/week
Estimated Cost
1000 $ / Km
ES
Survey
8

ED
Design
8

EX
Excavation
1
10
ST
Stringing (cable laying)
2
500
S1
First sheath test
4
0.4
BF
Backfilling
1
15
S2
Second sheath test
4
0.4
JT
Jointing
1
10
HV
H.V. test
(2 days)
10 Total


This information according to certain available resources.
Case Study:
Project description: "Underground 132 KV Cables"
·       Target duration: 40 week                           Start date: 1/1/2007
·       Down time cost rate = $40,000 /week
·       Bonus= $10,000/week                                 Penalty =  $15,000/week
Required:
1.   Construct the master plan.
2.   Construct the project cost profile and S-curve.
3.   Construct the payment conditions.
4.   Construct the review control (target performance) chart.
Case Study:

Scope & Requirements:
·       Project Scope: New  Way Construction
·       Requirement : 50 Km
·       Target duration: 2 month         Start date: 1/1/2007

Required:
1.          Estimate the total value
2.          Construct the logic diagram
3.          Construct the master plan.
4.          Construct the cost profile and S-curve.
5.          Construct the payment conditions.
6.          Construct the review control (target performance) chart.
7.          Manpower profile (Histogram)
8.          Equipment profile (Histogram)
9.          Material  profile (Histogram)
10.    Report the tender (offer) conditions




Tender (or offer) conditions:

1- Scope & Requirements:
·        Project Scope: New  Way Construction
·        Requirement : 50 Km
2- Technical Information:
·        Technical Standards: ASSHO
·        Target duration: 2 month          Start date: 1/1/2007
3- Financial Information:
·        Price = 18,000,000 $M
·        Bonus= $10,000/week                 Max. Bonus = $20,000
·        Penalty = 0.1%/day from the value of the latest works
·        Max. Penalty = 2% from the total value

4- Payment conditions:

5- Value Engineering:
In short,
Value engineering is a balance between cost and quality
 in order to achieve the desired function.

Value Engineering is Min.  Max. Proactive Approach



Min. Cost               Max. Performance

V : f (P,C)
V : Value        P  : Performance   C : Cost



Value Engineering (VE), also called:
·       Value Management
·       Value Analysis
·       Target costing

VE is a powerful systematic approach to analysis & improve the value within certain performance, through continuous improvement process.

VE is a professional, function oriented, creative and systematic team management approach, used to analyze and improve value.

VE encourages relationship between construction and design.

VE differs from other cost-reduction activities in that it is function oriented, as it involves a searching analysis of the function of a product as opposed to just seeking lower costs in methods and processes to produce the same product.



Why Value Engineering?

·       Maximize performance (quality, safety, time, etc.)
·       Maximize value added
·       Minimize cost
·       Good communication management
·       Good project management information system (PMIS)
·       Good team approach


VE = Value improvement & minimum cost

What is the value?

“Value” =
The measurement of how well an item fulfills
its function, considering:

-        Function or performance level
-        Quality level
-        Safety level
-        Unused capacity
-        Revenue, .. etc.





Example:
P = Performance
Q = Quality & safety level
C = Output cost rate

#
P
10
Q
10
C
10
Value index =
(P + Q) / C
Evaluation
P1
8
5
6
(8 + 5) / 6 = 2.17
B
P2
7
10
10
(7 + 10) / 10 = 1.7
C
P3
9
7
7
(9 + 7) / 7 = 2.29
A
“Function” =

The characteristic of an item
which meets the need or want of the user

§  “Basic function” = The feature or characteristic which is the primary reason for the existence of an item, from the user’s point of view

§  “Secondary function” = A feature which supports the basic function. It may make the item “sell” better or work better. i.e. it does not contribute directly to the accomplishment of a basic function.


The Value Engineering process determines possible ways of eliminating unnecessary expenses, while assuring that the quality, reliability, performance, consistency and other critical factors will meet the client’s satisfaction (Dell’ Isola, 1997).

The main objective of implementing Value Engineering is to improve the desired value by the use of all available resources while eliminating unnecessary costs, without sacrificing quality, performance, function or safety.




History of Value Engineering:
·       Japanese firms in 1960’s picked up “value engineering” and adapted it into what is now Target Costing

·       In the late 1980’s, U.S. firms realized benefits and value of Target Costing

·       World War II in the United States
o  War was a source of deficiency
o  A need to satisfy those functions
o  Process of function analysis was discovered to lower the product cost without altering its quality

·       In 1965, a study was conducted by the US DoD
o  Seven factors or opportunities were responsible for about 95% of the overall savings (Dell’ Isola, 1997).

·       In 1967, all the possible functions required by a client (verb-noun) were obtained, and then evaluated them in terms of cost to achieve the best improvement (Palmer, Kelly and Steven, 1996).




New Product cost determination – Cost reduction
(Reactive approach)
New Product cost determination – Value Eng.

(Proactive approach)
Value Engineering Steps:
VE is simply a systematic use of techniques which;


I- Pre-study preparation phase:

II- VE-study phase:

III- Post VE-study phase:





I- Pre-study preparation phase:
·       Awareness (training, benchmarking, .. etc)
·       Project selection
·       Team selection
·       Study scope of work
·       Data gathering


II- VE-study phase:
·       Information analysis
·       ABC analysis (rule 80/20)
·       Select the required items
·       Determine the required function of an item,
·       Function analysis (identify values for this function)
·       Value analysis
·       Establish the functions at the lowest overall cost without sacrificing quality, performance or safety.
·       Evaluation & risk assessment
·       Presentation


III- Post VE-study phase:
·       Final presentation
·       Final report
·       Target plan
·       Implementation
·       Review & follow-up

"Continuous improvement process"




 Evaluation Parameters

1.          Goals & target & constraints
2.          Leadership & org. structure
3.          Change management
4.          PMIS documentation
5.          Cost plans
6.          Job plans
7.          Quality plans
8.          Safety plans
9.          Material plans
10.     Standards & codes
11.     Negotiation skills
12.     Planning skills
13.     Control skills
14.     Risk assessment skills
15.     Value engineering skills
16.     Problem solving skills
17.      Others skills





References:


1.    Abdomerovic, M., Project Management Descriptors, Project Management Journal, PMI, PA, 1992, p42.
2.          Acharya, Pfrommer and Zirbel (1995), “Think Value Engineering”, Journal of Management in Engineering, December 1995.
3.          Al-Hammad and Hassanain (1996), “Value Engineering in the Assessment of Exterior Building Wall Systems”, Journal of Architectural Engineering, September 1996.
4.          Assaf, Jannadi and Al-Tamimi, “Computerized System for Application of Value Engineering Methodology”, Journal of Computing in Civil Engineering, July 2000.
5.          Basha and Gab-Allah (1991), “Value Engineering in Egyptian Bridge Construction”, Journal of Construction Engineering and Management, September 1991.
6.    Beynon-Davies, P. Information System: An Introduction to Informatics in Organisations. Palgrave, 2002.
7.    Cleland, D. I., Project Management: Strategic Design and Implementation, TAB Professional and Reference Books, PA, 1989.
8.          Dell’ Isola (1997), “Value Engineering for Practical Applications for Design, Construction, Maintenance and Operations”.
9.          Dell'Isola, A. J. "Value Engineering in Construction." Van Nostrand Reinhold Co. 4. Wideman, R. M., Cost Control of Capital Projects, BiTech Publishers, Vancouver, BC, Canada, Second Edition, 1995.
10.     GangaRao, Ward and Howser (1988), “Value Engineering Approach to Low-Volume Road Bridge Selection”, Journal of Structural Engineering, September 1988.
11.     Gee, A. F., “Bridge Winners and Losers – rapid evaluation of bridge designs and construction methods”, The Structural Engineer, Volume 65A, No.4, April 1987.
12.     Kirk, S. (2001), “Program for Value Engineering Workshop/Training.”, Kirk Associates, 2001.
13.     Palmer, Kelly and Steven (1996), “Holistic Appraisal of Value Engineering in Construction in United States”, Journal of Construction Engineering and Management, December 1996.
14.     PMBOK® Guide, " A Guide to the Project Management Body of Knowledge ", an American National Standard ANSI/PMI 99-001-2004

About the Author

Oil & Gas Online School

Author & Editor

We are a petroleum engineering blog for educational purposes edited by professionals that provides worldwide petroleum engineering materials. We also provide you with the latest Petroleum technologies, Refinery processes, Gas processing, Petrochemicals, courses, articles, books, videos, news, charts, prices and more.

Post a Comment

 
Oil Vips © 2015 - Designed by Templateism.com